2,084 research outputs found

    Spectroscopy of the All-Charm Tetraquark

    Full text link
    We use a non-relativistic model to study the mass spectroscopy of a tetraquark composed by ccˉccˉc \, \bar{c} \, c \, \bar{c} quarks in the diquark-antidiquark picture. By numerically solving the Schr\"{o}dinger equation with a Cornell-inspired potential, we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the ccˉc\bar{c} spectrum and are also extended to the interaction between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the diquark-antidiquark system, despite of the heavy diquark mass, and that the diquark has a finite size if treated in analogy to the ccˉc\bar{c} systems. We find that the lowest SS-wave T4cT_{4c} tetraquarks might be below their thresholds of spontaneous dissociation into low-lying charmonium pairs, while orbital and radial excitations would be mostly above the corresponding charmonium pair threshold. These states could be investigated in the forthcoming experiments at LHCb and Belle II.Comment: Presented at the XVII International Conference on Hadron Spectroscopy and Structure - Hadron2017, 25-29 September, 2017, University of Salamanca, Salamanca, Spai

    Looking for meson molecules in B decays

    Get PDF
    We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a ηπ\eta^\prime-\pi molecular current. We consider an isovector-scalar IGJPC=1 0++I^G J^{PC}= 1^-~0^{++} molecular current and we use the two-point and three-point functions to study the mass and decay width of such state. We consider the contributions of condensates up to dimension six and we work at leading order in αs\alpha_s. We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and a ηπK+K\eta^\prime-\pi\rightarrow K^+ K^- decay width around 10 MeV.Comment: 7 pages, 8 figure

    Can the meson cloud explain the nucleon strangeness?

    Full text link
    We use the meson cloud model, including the kaon and the KK^* contributions, to estimate the electric and magnetic strange form factors of the nucleon. We compare our results with the recent measurements of the strange quark contribution to parity-violating asymmetries in the forward G0 electron-proton scattering experiment. We conclude that it is not possible to explain the data using this model.Comment: version accepted for publication in Phys. Rev.

    Nonextensive hydrodynamics for relativistic heavy-ion collisions

    Full text link
    The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity parameter qq. In this formulation the parameter qq characterizes some specific form of local equilibrium which is characteristic for the nonextensive thermodynamics and which replaces the usual local thermal equilibrium assumption of the usual hydrodynamical models. We argue that there is correspondence between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics. It leads to simple expression for dissipative entropy current and allows for predictions for the ratio of bulk and shear viscosities to entropy density, ζ/s\zeta/s and η/s\eta/s, to be made.Comment: Final version accepted for publication in Phys. Rev.

    Exclusive processes with a leading neutron in epep collisions

    Full text link
    In this paper we extend the color dipole formalism to the study of exclusive processes associated with a leading neutron in epep collisions at high energies. The exclusive ρ\rho, ϕ\phi and J/ΨJ/\Psi production, as well as the Deeply Virtual Compton Scattering, are analysed assuming a diffractive interaction between the color dipole and the pion emitted by the incident proton. We compare our predictions with the HERA data on ρ\rho production and estimate the magnitude of the absorption corrections. We show that the color dipole formalism is able to describe the current data. Finally, we present our estimate for the exclusive cross sections which can be studied at HERA and in future electron-proton colliders.Comment: 11 pages, 9 figures. Version published in Physical Review
    corecore